ON THE RANGE OF AN INVARIANT MEAN

BY E. E. GRANIRER

Introduction. Let S be a discrete semigroup, m(S) the space of bounded real functions on S with the usual sup. norm, and $m(S)^*$ the conjugate Banach space of m(S). An element $\phi \in m(S)^*$ is a mean if $\phi(f) \ge 0$ whenever $f \ge 0$ and $\phi(1) = 1$, where 1 denotes also the constant one function on S.

S is said to be left [right] amenable if there is a mean $\phi \in m(S)^*$ which is in addition left [right] invariant, i.e., satisfies $\phi(f_a) = \phi(f)$ [$\phi(f^a) = \phi(f)$] for each $f \in m(S)$ and $a \in S$ (where $f_a(s) = f(as)$ and $f^a(s) = f(sa)$ for f in m(S) and $a, s \in S$). S is amenable if there is a mean $\phi \in m(S)^*$ which is left and right invariant.

If $A \subseteq S$, then 1_A will be the function which is one on A and zero otherwise. We shall write 1 instead of 1_S and $\phi(A)$ instead of $\phi(1_A)$ (if $\phi \in m(S)^*$), sometimes.

The range of an element $\phi \in m(S)$ is the set of numbers $\{\phi(A), \text{ where } A \text{ ranges over all subsets of } S\}$. It is clear that the range of a mean is a subset of $[0, 1] = \{x; 0 \le x \le 1\}$.

If S is a left amenable semigroup, define the following relation between elements of S: $a \sim b$ iff as = bs for some s in S. The relation \sim is an equivalence relation which is two-sidedly stable (or a congruence), i.e., if $a \sim b$, then $as \sim bs$ and $sa \sim sb$ for any s in S (since S is left amenable) (see [3, p. 371] and Ljapin [1, p. 39]).

If $s \in S$, let s' stand for the equivalence class to which s belongs and let $S' = \{s'; s \in S\}$. A multiplication between the elements of S' can be defined by s't' = (st)'. This multiplication is well defined and associative, rendering thus S' a semigroup (since \sim is a congruence. See Ljapin [1, pp. 265–266]). Furthermore, S' has right cancellation (and coincides with S if S has right cancellation).

It has been shown by this author in [4] (Corollary to Lemma 1) that, if S has right cancellation, is left amenable and contains an element of infinite order, then the range of any invariant mean on m(S) contains the set of rationals in [0, 1]. Moreover, if $0 \le r \le 1$ is a rational number, then there is a set $A \subset S$ such that $\phi(A) = r$ for any left invariant mean ϕ on m(S).

T. Mitchell has even suggested orally a proof to show that, for the above considered semigroup S, the range of each left invariant mean ϕ on m(S) is the whole [0, 1] interval.

We would like to prove in this paper the following:

Conjecture. Let S be a left amenable semigroup. Then the range of each left invariant mean on m(S) is the whole [0, 1] interval if and only if S' is infinite.

Unfortunately, we do not know how to prove this result. But we know how to prove something close to it.

Call a group G an AB group if: (a) G is amenable, (b) each element of G has finite order, (c) each infinite subgroup of G is *not* locally finite (a group is locally finite if each finitely generated subgroup is finite), (d) G is an infinite group.

We doubt whether AB groups exist at all, since if G were an AB group, then each of its infinite subgroups would contain a subgroup which would provide a counter-example to Burnside's conjecture and would be in addition, amenable.

The main result of this paper is the

THEOREM 3. Let S be a left amenable semigroup for which S' is not an AB group. Then the range of each left invariant mean on m(S) is the whole [0, 1] interval if and only if S' is infinite.

It comes out that if S' is not an AB group, then m(S) admits a left invariant mean whose range is not the whole [0, 1] interval, if and only if S' is a finite group. In this case, there is even a left invariant mean on m(S) (which may annihilate single point sets) whose range is the set $\{k/n; k=0, 1, \ldots, n\}$, where n is the order of S'.

We prove in fact, more than stated in the above theorem, namely that if S' is an infinite non-AB group, then there is a class of subsets of $S\{A(x), 0 \le x \le 1\}$ which satisfies $A(0) = \emptyset$, A(1) = S, $A(x) \subseteq A(x')$ if $0 \le x \le x' \le 1$ and $\phi(A(x)) = x$ for each left invariant mean $\phi \in m(S)^*$ and each $0 \le x \le 1$. In particular, the range of a left invariant mean is attained on the class of sets $A \subseteq S$, for which $\phi(A)$ is constant when ϕ ranges over the set of left invariant means.

In conclusion, it is a pleasure to thank T. Mitchell for the friendly and fruitful conversations we had with him. The idea of the proof of Theorem 1 and of the lemma preceding it, was basically suggested by him.

Some more notations. Let S be a semigroup. If $a \in S$, we denote by $l_a : m(S) \to m(S)$, defined by $l_a f = f_a$ for f in m(S). If $\phi \in m(S)$, then $L_a : m(S)^* \to m(S)^*$ is defined by $(L_a \phi) f = \phi(f_a)$ for each f in m(S). If $A \subset S$ we say that $\phi \in m(S)^*$ is A-left invariant if $L_a \phi = \phi$ for each a in A. If A consists of the single element $c \in S$, then we say that ϕ is c-left invariant. If A, B are subsets of S, then B is A-left almost convergent if $\phi_1(B) = \phi_2(B)$ for any two A-left invariant means ϕ_1 , $\phi_2 \in m(S)^*$. $B \subset S$ is left almost convergent if it is S-left almost convergent. For characterizations of almost convergent subsets of the additive semigroup of positive integers, see G. Lorentz [6] (see also Day [2, pp. 538-540]).

If S is a right cancellation semigroup, then $c \in S$ has order $n \ge 1$, if n+1 is the first integer which satisfies $c^{n+1} = c$. $c \in S$ has infinite order if no such $n \ge 1$ exists.

The main theorem.

LEMMA 1a. Let S be a right cancellation semigroup, $c \in S$ an element of infinite

order, and $A \subseteq S$ be such that $cA \subseteq A$. Let $Q_n = \{p/2^n; p = 0, 1, ..., 2^n\}$ and $Q = \bigcup_{n=1}^{\infty} Q_n$. Then there exists a collection of sets A(r), $r \in Q$, such that

- (1) $A(0) = \emptyset$, A(1) = A.
- (2) If $r, r' \in Q$ with r < r', then $A(r) \subseteq A(r')$.
- (3) $\phi(A(r)) = r\phi(A)$ for any c-left invariant mean ϕ .

Proof. By Lemma 1 of [4], there are disjoint sets V_1 , $V_2 \subset A$ such that $A = V_1 \cup V_2$, $cV_1 \subset V_2$ and $cV_2 \subset V_1$ (hence $c^2V_1 \subset V_1$). Let $A(0) = \emptyset$, $A(\frac{1}{2}) = V_1$, and $A(1) = A = V_1 \cup V_2$. Then

$$c^{2}[A(\frac{1}{2})-A(0)] \subset [A(\frac{1}{2})-A(0)], \quad c^{2}[A(1)-A(\frac{1}{2})] \subset [A(1)-A(\frac{1}{2})],$$

and if ϕ is any c-left invariant mean, then $\phi(V_1) \leq \phi(cV_1) \leq \phi(cV_2) \leq \phi(cV_2) \leq \phi(V_1)$, i.e., $\phi(V_1) = \phi(V_2)$. Hence, $\phi(A(\frac{1}{2})) = \frac{1}{2}\phi(A)$ and so $\phi(A(r)) = r\phi(A)$ for any $r \in Q_1$. For fixed n, arrange the set of rationals Q_n in increasing order as $0 = r_0 < r_1 < \cdots < r_{2^n} = 1$ and assume that we have found sets $A(r) \subset A$, $r \in Q_n$ such that $A(r) \subset A(r')$ if $r, r' \in Q_n$ with r < r', $A(0) = \emptyset$, A(1) = A and such that $\phi(A(r)) = r\phi(A)$ for any c-left invariant mean ϕ and any $r \in Q_n$ and such that for some k > 0,

$$c^{k}[A(r_{i})-A(r_{i-1})] \subseteq [A(r_{i})-A(r_{i-1})]$$

for $1 \le i \le 2^n$.

There are then, by Lemma 1 of [4], disjoint sets $V_1^{(i)}$, $V_2^{(i)}$ with

$$V_1^{(i)} \cup V_2^{(i)} = A(r_i) - A(r_{i-1}),$$

 $c^k V_1^{(i)} \subset V_2^{(i)}$, and $c^k V_2^{(i)} \subset V_1^{(i)}$. If ϕ is any c-left invariant mean then as before $\phi(V_1^{(i)}) = \phi(V_2^{(i)})$ and so

$$2\phi(V_1^{(i)}) = \phi[A(r_i) - A(r_{i-1})] = (r_i - r_{i-1})\phi(A) = \phi(A)/2^n$$

Hence $\phi(V_1^{(i)}) = \phi(A)/2^{n+1}$. Define now: $A(r_{i-1} + 1/2^{n+1}) = A(r_{i-1}) \cup V_1^{(i)}$ for $1 \le i \le 2^n$. Since $V_1^{(i)} \cap A(r_{i-1}) = 0$, we have that

$$\phi(A)(r_{i-1}+1/2^{n+1})=(r_{i-1}+1/2^{n+1})\phi(A)$$

for any c-left invariant mean. For $r \in Q_{n+1}$ and $r \notin Q_n$ we have thus defined sets A(r). If $r \in Q_n$, let A(r) be given by the induction hypothesis. (Hence the sets A(r) constructed at stage n+1 coincide for $r \in Q_n$ with the sets built at stage n.) We have, from above, that $A(r_i) - A(r_{i-1} + 1/2^{n+1}) = V_2^{(i)}$ and $A(r_{i-1} + 1/2^{n+1}) - A(r_{i-1}) = V_1^{(i)}$. Hence, if the elements of Q_{n+1} are arranged in increasing order as $0 = s_0 < s_1 < \cdots < s_{2^{n+1}}$, then $c^{2k}[A(s_i) - A(s_{i-1})] \subset A(s_i) - A(s_{i-1})$, $A(s_{i-1}) \subset A(s_i)$ for $1 \le i \le 2^{n+1}$ and $\phi(A(s_i)) = s_i \phi(A)$ for any c-left invariant mean. Consider now the sets A(r), $r \in Q = \bigcup_{i=1}^{\infty} Q_n$. If $r, r' \in Q$ with r < r', then $r, r' \in Q_n$ for some n (since $Q_n \subset Q_{n+1}$); hence $A(r) \subset A(r')$. Conditions (1), (3) are satisfied from above.

THEOREM 1. Let S be a right cancellation semigroup, $c \in S$ an element of infinite order, and $A \subseteq S$ be such that $cA \subseteq A$. Then there exists a collection of sets $\{A(x); 0 \le x \le 1\}$ such that:

- (1) $A(0) = \emptyset$, A(1) = A.
- (2) If $0 \le x < x' \le 1$, then $A(x) \subseteq A(x')$.
- (3) $\phi(A(x)) = x\phi(A)$ for any c-left invariant mean ϕ on m(S) and any $x \in [0, 1]$.

Proof. For $x \in Q = \bigcup_{n=1}^{\infty} Q_n$, let A(x) be the sets constructed in the previous lemma. If 0 < x < 1 is such that $x \notin Q$, define $A(x) = \bigcap_{\{r \in Q: r > x\}} A(r)$. If now $0 \le x < x' \le 1$, then:

- (a) if $x \in Q$, then $A(x) \subseteq A(r)$ for any r > x'; hence $A(x) \subseteq A(x')$,
- (b) if $x' \in Q$, then $A(x) \subseteq A(x')$ is clear, and
- (c) if $x \notin Q$ and $x' \notin Q$, then for some $r \in Q$ we have x < r < x' which implies $A(x) \subseteq A(r) \subseteq A(x')$. Hence, (1) and (2) hold.

If now 0 < x < 1 and $x \notin Q$ and ϕ is a c-left invariant mean, then

$$r\phi(A) = \phi(A(r)) \le \phi(A(x)) \le \phi(A(r')) = r'\phi(A)$$

for any $r, r' \in Q$ with r < x < r'. This implies that $x(\phi(A)) \le \phi(A(x)) \le x\phi(A)$ since Q is dense in [0, 1], which finishes this proof.

COROLLARY. Let S be a right cancellation semigroup, $c \in S$ an element of infinite order. There exists a class of sets $\{A(x); 0 \le x \le 1\}$ such that:

- (1) $A(0) = \emptyset$ and A(1) = S.
- (2) $A(x) \subseteq A(x')$ if $0 \le x < x' \le 1$.
- (3) $\phi(A(x)) = x$ for any $0 \le x \le 1$ and any c-left invariant mean $\phi \in m(S)^*$.

The idea of using the background of [4] (see [4, Lemma 1 and Corollary to Lemma 1]) as above and especially the use of the monotonicity of an invariant mean as in the proof of Theorem 1 is due to T. Mitchell (oral communication).

REMARKS. Let X be a set, $\mathscr A$ an algebra of subsets of X and ν a finitely additive, finite measure on $\mathscr A$. Then ν has the intermediate property on $A \in \mathscr A$ if for any $0 \le b \le \nu(A)$ there exists a $B \in \mathscr A$ such that $B \subseteq A$ and $\nu(B) = b$. One has for the above S that a c-left invariant mean has the intermediate property on any $A \subseteq S$ for which $cA \subseteq A$. Moreover, if A is c-left almost convergent, there is even a set $B \subseteq A$ which is c-left almost convergent for which $\phi(B) = b$.

As a consequence of the above corollary, one has that, if S is a right cancellation left amenable semigroup, (and in particular an amenable group) which contains an element of infinite order, then the range of any left invariant mean ϕ is the whole [0, 1] interval and, moreover, $A \subseteq S$ need only range in the class of left almost convergent subsets of S in order that $\phi(A)$ should fill the entire [0, 1] interval.

We ask now what is the range of a left invariant mean when S is a group which is the full direct product of countably many copies of the multiplicative group $\{-1, 1\}$. This group is infinite and each of its elements has order two. The above

theorem does not answer this question. Another question is what is the range of a left invariant mean on the group of all the permutations of the integers which leave all but a finite number of integers fixed. Both these groups are locally finite infinite groups. We shall show that if G is any amenable group which contains a locally finite infinite group, then the range of any left invariant mean ϕ on m(G) is the whole [0, 1] interval. We show even more than that in Theorem 2.

Notation. G will denote a discrete group with identity e. If $H \subseteq G$ is a subgroup of G then G/H will always stand for the set of right cosets of G with respect to H, i.e., for $\{Hg; g \in G\}$. We say then that $A = \{g_{\alpha}; \alpha \in I\} \subseteq G$ is a set of representatives of G/H if G = HA and $Hg_{\alpha} \cap Hg_{\beta} \neq \emptyset$ implies $g_{\alpha} = g_{\beta}$. We do not speak at all in what follows about left cosets. If A_1, \ldots, A_n are subsets of G, then

$$A_1 \cdots A_n = \{a_1 a_2 \cdots a_n; a_i \in A_i, i = 1, 2, \ldots, n\}.$$

REMARK 1. Let $H \subset H_1$ be subgroups of the group H_2 and let A_1 , A_2 be sets of representatives of H_1/H , H_2/H_1 , respectively. Then A_1A_2 is a set of representatives of H_2/H . Since $H_1=HA_1$ and $H_2=H_1A_2=H(A_1A_2)$ and if $Ha_1a_2\cap Ha_1'a_2'\neq\varnothing$ with a_i , $a_i'\in A_i$, i=1,2, then $H_1a_2\cap H_1a_2'\neq\varnothing$; hence $a_2=a_2'$ which implies that $Ha_1\cap Ha_1'\neq\varnothing$. Therefore, $a_1=a_1'$. In particular, $a_1a_2=a_1'a_2'$ with a_i , $a_i'\in A_i$, i=1,2, is possible if and only if $a_1=a_1'$ and $a_2=a_2'$.

LEMMA 1. Let S_n be subgroups of G such that $S_n \subseteq S_{n+1}$ for $n=1, 2, \ldots$ Let R_n be a set of representatives of S_n/S_{n-1} with $e \in R_n$ for each n and $S = \bigcup_{n=1}^{\infty} S_n$. Then $U_j = \bigcup_{n=j+1}^{\infty} \{R_{j+1} \cdots R_n\}$ is a set of representatives of S/S_j for $j=1, 2, \ldots$

Proof. $\{R_{j+1}\cdots R_n\}$ is a set of representatives of S_n/S_j for $n \ge j+1$. Since, by definition, R_{j+1} is a set of representatives of S_{j+1}/S_j and if $\{R_{j+1}\cdots R_{n-1}\}$ is a set of representatives of S_{n-1}/S_j then, by Remark 1, $\{R_{j+1}\cdots R_{n-1}R_n\}$ is a set of representatives of S_n/S_j . Furthermore,

$$S = \bigcup_{n=i+1}^{\infty} S_n = \bigcup_{n=i+1}^{\infty} \{S_j R_{j+1} \cdots R_n\} = S_j \left[\bigcup_{n=i+1}^{\infty} \{R_{j+1} \cdots R_n\} \right] = S_j U_j.$$

Assume now that $S_jr \cap S_jr' \neq \emptyset$ for $r \in R_{j+1} \cdots R_n$, $r' \in R_{j+1} \cdots R_m$. (We can assume that $n \ge m$.) Since $e \in R_i$ for each i, $R_{j+1} \cdots R_k \subset R_{j+1} \cdots R_k R_{k+1}$. Hence, r, $r' \in R_{j+1} \cdots R_n$ which is a set of representatives S_n/S_j . Therefore, r = r' which finishes this proof.

REMARK 2. In the notation of Lemma 1, let R be a set of representatives of G/S and define

$$V_j = \bigcup_{n=j+1}^{\infty} \{R_{j+1} \cdots R_n\} R = U_j R.$$

Then V_j is a set of representatives of G/S_j (apply Remark 1). Furthermore, from the definition of V_j , it follows immediately that $R_jV_j=V_{j-1}$ for $j\ge 2$ (which is a set of representatives of G/S_{j-1}).

REMARK 3. If H is a subgroup of G and V a set of representatives of G/H, then clearly HV = G and $hV \cap h'V \neq \emptyset$, with $h, h' \in H$, implies that h = h'. Since if hv = h'v' with $v, v' \in V$, then $Hv \cap Hv' \neq \emptyset$, i.e., v = v' and so h = h'.

LEMMA 2. The above chosen subsets V_1, V_2, \ldots of G satisfy:

- (1) $V_n \supset V_{n+1}$ for each $n \ge 1$.
- (2) $S_i V_i = G$ and $s V_i \cap s' V_i \neq \emptyset$ with $s, s' \in S_i$ implies s = s'.
- (3) $R_i V_i = V_{i-1}$ for $j \ge 2$.

Proof. (1) and (2) are clear from Remarks 2 and 3 while $R_j V_j = V_{j-1}$ by definition.

LEMMA 3. Let S_n be finite subgroups of G of order $p_n < \infty$ such that $S_n \subset S_{n+1}$ (proper inclusion) for $n=1, 2, \ldots$ Let $S = \bigcup_{1}^{\infty} S_n$, $Q_n = \{k/p_n; k=0, 1, \ldots, p_n\}$, and $Q = \bigcup_{1}^{\infty} Q_n$. Then there exists a family of subsets of S, $\{A(r); r \in Q\}$ such that:

- (1) $A(0) = \emptyset$, A(1) = G.
- (2) If $r_1 < r_2$ with $r_1, r_2 \in Q$, then $A(r_1) \subseteq A(r_2)$.
- (3) $\phi(A(r)) = r$ for each $r \in Q$ and each S-left invariant mean $\phi \in m(G)^*$.

Proof. Choose for each n a fixed set R_n of representatives of S_n/S_{n-1} with $e \in R_n$. Since S_n is a proper subgroup of S_{n+1} , we have that $p_nq_n=p_{n+1}$ for some $q_n \ge 2$ and R_n contains q_{n-1} elements. Furthermore, $Q_n \subseteq Q_{n+1}$ for each n (since $k/p_n = kq_n/p_{n+1}$). Consider the sets V_n constructed in Lemma 3 with respect to the R_n 's. We construct the sets A(r) for $r \in Q_1$ as follows: Assume that

$$S_1 = \{s_1^{(1)}, s_2^{(1)}, \ldots, s_{p_1}^{(1)}\}\$$

is an enumeration of the elements of S_1 with $s_1^{(1)} = e$. Let then: $A(0) = \emptyset$, $A(1/p_1) = V_1$, $A(2/p_1) = V_1 \cup s_2^{(1)}V_1$, ..., $A(k/p_1) = V_1 \cup s_2^{(1)}V_1 \cup \cdots \cup s_k^{(1)}V_1$ for $k = 1, 2, \ldots, p_1$.

Since $S_1V_1 = G$ and $sV_1 \cap s'V_1 \neq \emptyset$ if $s \neq s'$ with $s, s' \in S_1$ we have that $\phi(V_1) = 1/p_1$ and $\phi(A(k/p_1)) = k/p_1$ if $k = 0, 1, ..., p_1$ for each S-left invariant mean ϕ . Also, $A(r_1) \subseteq A(r_2)$ if $r_1 < r_2$ and $r_1, r_2 \in Q_1$.

Assume now that sets A(r) have been built for $r \in Q_n$ such that $A(1/p_n) = V_n$, $A(0) = \emptyset$, and such that for some enumeration of the elements of S_n , say $S_n = \{s_1^{(n)}, \ldots, s_{p_n}^{(n)}\}$ with $s_1^{(n)} = e$, $A(k/p_n) = \bigcup_{i=1}^k s_i^{(n)} V_n$ if $1 \le k \le p_n$. We define then sets A(r), $r \in Q_{n+1}$, as follows: If $k = iq_n$ for $i = 0, 1, \ldots, p_n$, then $k/p_{n+1} = i/p_n$. (We define in this case $A(k/p_{n+1}) = A(i/p_n)$ where $A(i/p_n)$ is given by the induction hypothesis.) We define $A(1/p_{n+1}) = V_{n+1}$ and if $R_{n+1} = \{t_1, \ldots, t_{q_n}\}$ with $t_1 = e$, define

$$A\left(\frac{k}{p_{n+1}}\right) = \bigcup_{i=1}^{k} t_i V_{n+1} \quad \text{for } 1 \le k \le q_n.$$

(Since $R_{n+1}V_{n+1} = V_n$, we have that $A(q_n/p_{n+1}) = A(1/p_n)$ in agreement with the previous definition of $A(1/p_n)$.) We define:

$$A\left(\frac{k}{p_n} + \frac{j}{p_{n+1}}\right) = A\left(\frac{k}{p_n}\right) \cup s_{k+1}^{(n)} A\left(\frac{j}{p_{n+1}}\right)$$
for $1 \le j \le q_n - 1$ and $k = 1, 2, \dots, p_n - 1$.

We have

$$A\left(\frac{k}{p_{n}} + \frac{j}{p_{n+1}}\right) = \left[\bigcup_{i=1}^{k} s_{i}^{(n)} V_{n}\right] \cup \left[s_{k+1}^{(n)} \left[t_{1} V_{n+1} \cup \cdots \cup t_{j} V_{n+1}\right]\right]$$

$$= \left[\bigcup_{i=1}^{k} \bigcup_{m=1}^{q_{n}} s_{i}^{(n)} t_{m} V_{n+1}\right] \cup \left[s_{k+1}^{(n)} \left[t_{1} V_{n+1} \cup \cdots \cup t_{j} V_{n+1}\right]\right]$$

if $1 \le j \le q_n - 1$ and $1 \le k \le p_n - 1$.

Enumerate now the elements of S_{n+1} by:

$$s_1^{(n+1)} = t_1 = e, \ s_2^{(n+1)} = t_2, \ldots, s_{q_n}^{(n+1)} = t_{q_n}, \ s_{iq_n}^{(n+1)} = s_i^{(n)} t_{q_n}$$

for $i=1, 2, \ldots, p_n$, and

$$s_{iq_{n}+1}^{(n+1)} = s_{i+1}^{(n)} t_{i}$$
 if $1 \le i \le q_{n}-1$ and $0 \le i \le p_{n}-1$.

It follows from (*), upon a moment's reflection, that

$$A\left(\frac{kq_n+j}{p_{n+1}}\right) = A\left(\frac{k}{p_n} + \frac{j}{p_{n+1}}\right) = \left[\bigcup_{i=1}^{kq_n} s_i^{(n+1)} V_{n+1}\right] \cup s_{kq_n+1}^{(n+1)} V_{n+1} \cup \dots \cup s_{kq_n+j}^{(n+1)} V_{n+1}$$
$$= \bigcup_{i=1}^{kq_n+j} s_i^{(n+1)} V_{n+1} \quad \text{if } 0 \le k \le p_n-1 \quad \text{and} \quad 1 \le j \le q_n-1.$$

Furthermore.

$$A\left(\frac{kq_n}{p_{n+1}}\right) = A\left(\frac{k}{p_n}\right) = \bigcup_{i=1}^k s_i^{(n)} V_n = \bigcup_{i=1}^k \bigcup_{j=1}^{q_n} s_i^{(n)} t_j V_{n+1}$$
$$= \bigcup_{i=1}^{kq_n} s_m^{(n+1)} V_{n+1} \quad \text{for } k = 1, 2, \dots, p_n.$$

We have thus constructed sets A(r), $r \in Q_{n+1}$, which coincide with the sets A(r) given by the induction hypothesis for $r \in Q_n$, such that $A(1/p_{n+1}) = V_{n+1}$ and for some enumeration of $S_{n+1} = \{s_1^{(n+1)}, \ldots, s_{p_n+1}^{(n+1)}\}$, with $s_1^{(n+1)} = e$, we have that

$$A\left(\frac{k}{n_{n+1}}\right) = \bigcup_{i=1}^{k} s_i^{(n+1)} V_{n+1}$$
 for $1 \le k \le p_{n+1}$.

We can hence assume that there exists a class of subsets of G, $\{A(r); r \in Q\}$ such that $A(0) = \emptyset$, A(1) = G and such that for each n there is an enumeration of S_n , $S_n = \{s_1^{(n)}, \ldots, s_{p_n}^{(n)}\}$ with $e = s_1^{(n)}$ such that $A(k/p_n) = \bigcup_{i=1}^k s_i^{(n)} V_n$ for $1 \le k \le p_n$ and $A(0) = \emptyset$. (The delicate point here is that A(r) does not depend on the particular representation of r as k/p_n .)

If $r, r' \in Q$ with r < r', say, then $r, r' \in Q_n$ for some n. Hence, $r = k/p_n < k'/p_n = r'$ and so $A(r) = \bigcup_1^k s_i^{(n)} V_n \subset \bigcup_1^{k'} s_i^{(n)} V_n = A(r')$. Furthermore, by Lemma 2, $sV_n \cap s'V_n = 0$ if $s \neq s'$ and $s, s' \in S_n$. Hence, $\phi[A(k/p_n)] = k\phi(V_n)$ for any S-left invariant mean ϕ . But

$$\phi(G) = \phi\left[\bigcup_{1}^{p_n} s_i^{(n)} V_n\right] = p_n \phi(V_n); \text{ i.e., } \phi(V_n) = \frac{1}{p_n}.$$

This implies that $\phi(A(k/p_n)) = k/p_n$ or that $\phi(A(r)) = r$ for each $r \in Q$ and any S-left invariant mean ϕ on m(G). This finishes the proof.

THEOREM 2. Let S_n be finite subgroups of G with $S_n \subset S_{n+1}$ (proper inclusion) and let $S = \bigcup_{n=1}^{\infty} S_n$. Then there exists a class of subsets of G, $\{A(x); 0 \le x \le 1\}$ such that

- (1) $A(0) = \emptyset$, A(1) = G.
- (2) If $0 \le x < x' \le 1$, then $A(x) \subseteq A(x')$.
- (3) $\phi(A(x)) = x$ for each $0 \le x \le 1$ and each S-left invariant mean ϕ on m(G).

Proof. Let p_n be the order of S_n and consider the sets Q_n and $Q = \bigcup_{1}^{\infty} Q_n$ of Lemma 3. Q is dense in [0, 1]. For $r \notin Q$, choose the sets A(r) constructed in Lemma 3. If 0 < x < 1 is such that $x \in Q$, then let $A(x) = \bigcap_{\{r \in Q: r > x\}} A(r)$. Let $0 \le x < x' \le 1$. If either $x \in Q$ or $x' \in Q$, then clearly $A(x) \subseteq A(x')$. If x and x' are not in Q, then let $r \in Q$ be such that x < r < x'. Then $A(x) \subseteq A(r) \subseteq A(x')$. Let now ϕ be any S-left invariant mean on m(G) and $0 \le x \le 1$ with $x \notin Q$.

If $r, r' \in Q$ are such that r < x < r', then

$$r' = \phi(A(r')) \le \phi(A(x)) \le \phi(A(r)) = r.$$

Since Q is dense in [0, 1], $\phi(A(x)) = x$, which finishes the proof.

REMARK. If G contains an element a of order two and ϕ is a mean whose range is $\{0, 1\}$, then $\frac{1}{2}(L_a\phi + L_a^2\phi)$ is an a-left invariant mean whose range is $\{0, \frac{1}{2}, 1\}$.

Let S be a semigroup. S is said to be periodic if for any $s \in S$ there is some $n \ge 1$ such that s^n is an idempotent (see Ljapin [1, p. 113]). We shall subsequently need the following:

LEMMA 4. Let S be a right cancellation left amenable semigroup which is periodic. Then S is a group(1).

Proof. Let E be the set of all idempotents of S. For $e \in E$, let $R_e = \{a \in S; a^r = e \text{ for some } r \ge 1\}$. If $e_1, e_2 \in E$ and $a^{r_1} = e_1$ $a^{r_2} = e_2$ for some $a \in S$, then $e_1 = a^{r_1 r_2} = e_2$. Hence, $R_{e_1} \cap R_{e_2} = 0$ if $e_1 \ne e_2$ and $R_e \cap E = \{e\}$ for each $e \in E$. (For this argument, see Ljapin [1, p. 114].)

 R_e contains a right ideal for each $e \in E$. In fact, if $a \in S$, then $(ea)^n$ is an idempotent for some $n \ge 1$. Hence $(ea)^{2n} = e(ea)^n$ which implies by the right cancellation that $(ea)^n = e$. Therefore, $eS \subseteq R_e$. Since S is left amenable, any two right ideals have nonvoid intersection and, therefore,

$$R_{e_1} \cap R_{e_2} \neq \emptyset$$
 for $e_1, e_2 \in E$.

This implies that S contains a unique idempotent and, since the right cancellation is present, we get by Ljapin [1, p. 113] that S is a group.

REMARK 4. In particular, any finite right cancellation left amenable semigroup is a group (which is well known).

LEMMA 5. Let S be a left amenable semigroup for which S' is finite and contains $0 < n < \infty$ elements (necessarily S' is a finite group). Then there is a left invariant mean

⁽¹⁾ Here as in Lemma 5 the condition that S is left amenable can be relaxed to: any two right ideals of S have nonvoid intersection.

 ϕ on m(S) for which $\phi(A)$ takes the only values $\{k/n; k=0, 1, ..., n\}$, when A ranges over all subsets of S.

Proof. Let $S' = \{s'_1, \ldots, s'_n\}$ where $s_i \in S$ is a fixed representative of s'_i , $1 \le i \le n$ (till the end of this proof). The semigroup S' is left amenable as a homomorphic image of S (Day [2, p. 515(c)]) and has right cancellation (if a'c' = b'c', then (ac)' = (bc)', i.e., a(cs) = b(cs) for some $s \in S$; hence, a' = b'). By Remark 4, S' is a finite group. Assume that s_1' is the identity of S' (otherwise, renumber the s_i 's) and let $S_i = \{s \in S; s' = s_i'\}$ for i = 1, 2, ..., n. S_1 is a subsemigroup of S since if $a, b \in S_1$, then $(ab)' = s_1's_1' = s_1'$ and so $ab \in S_1$. Furthermore, if $a, b \in S_i$ for some i, then ac = bc for some $c \in S$. If $c \in S_j$, let $s'_k = (s'_j)^{-1}$. Then $(cs_k)' = s'_j s'_k = s'_1$; hence, $a(cs_k) = b(cs_k)$ and $cs_k \in S_1$. We have shown that if $a, b \in S_i$, there is some d in S_1 such that ad = bd. In particular, this is true for $a, b \in S_1$. Hence, by Corollary 3 of T. Mitchell [5] (for a different proof, see Theorem 3 in [4]), $m(S_1)$ admits a left invariant mean ϕ which is multiplicative on $m(S_1)$ (i.e., $\psi(fg) = \psi(f)\psi(g)$ for $f, g \in m(S_1)$). Let $\beta(S) \subseteq m(S)^*$ be the set of multiplicative means on m(S) (i.e., which satisfy $\phi(fg) = \phi(f)\phi(g)$ for $f, g \in m(S)$. Then $L_s(\beta(S)) \subset \beta(S)$ for any s in S and, in particular, for any s in S_1 . Since $\beta(S)$ is compact hausdorff there exists by Mitchell's fixed point theorem (see T. Mitchell [5] or [4, Theorem 3]) some $\phi_0 \in \beta(S)$ which is S_1 -left invariant. If $A \subseteq S$, then $1_A^2 = 1_A$ and, therefore, $\phi_0(A)$ is either 0 or 1 for any $A \subseteq S$. If $a \in S_i$, then $ac = s_i c$ for some $c \in S_1$ and, therefore:

$$L_a\phi_0 = L_aL_c\phi_0 = L_{ac}\phi_0 = L_{s_i}c\phi_0 = L_{s_i}\phi_0,$$

since ϕ_0 is S_1 -left invariant. Furthermore, for any $a \in S$,

$$\{(as_i)'; i = 1, 2, ..., n\} = \{a's_i', i = 1, 2, ..., n\} = \{s_i', i = 1, 2, ..., n\} = S',$$

since S' is a group. Let

$$\phi = \frac{1}{n} \sum_{i=1}^{n} L_{s_i} \phi_0.$$

Then

$$L_a \phi = \frac{1}{n} \sum_{i=1}^{n} L_{as_i} \phi_0 = \frac{1}{n} \sum_{i=1}^{n} L_{s_i} \phi_0$$

which shows that ϕ is a left invariant mean. If $A \subset S$, then $(L_{s_i}\phi_0)(1_A)$ is either 0 or 1 since $L_{s_i}\phi_0$ is also multiplicative; therefore, $\phi(A) = (1/n) \sum_{1}^{n} L_{s_i}\phi_0(1_A)$ takes one of the values $\{k/n; k=0, 1, \ldots, n\}$. Fix now $1 \le i, j \le n$ and let $s'_k = s'_i(s'_j)^{-1}$. If $a \in S_j$, then $(s_k a)' = s'_k s'_j = s'_i$ which shows that $s_k S_j \subset S_i$. Therefore, for any left invariant ϕ_1 on m(S), $\phi_1(S_j) \le \phi_1(s_k S_j) \le \phi_1(S_i)$. By symmetry, one has $\phi_1(S_i) = \phi_1(S_j)$. Since S_i are disjoint, one has $1 = \phi_1(S) = n\phi_1(S_i)$ or $\phi_1(S_i) = 1/n$ for $i = 1, 2, \ldots, n$. Therefore, if $A_k = \bigcup_{1}^{k} S_i$ and $A_0 = \emptyset$ then $\phi_1(A_k) = k/n$ for any left invariant mean ϕ_1 on m(S) and, in particular, the range of the above defined left invariant mean ϕ is exactly the set $\{k/n; k=0, 1, \ldots, n\}$. This range is attained on the class of left almost convergent subsets of S.

REMARK 5. For each $0 < n < \infty$ there is a countable commutative (left) amenable

semigroup S such that S' has order n and each (left) invariant mean on m(S) annihilates single point sets.

Let $T = \{1, 2, ...\}$ with the multiplication $ij = \max\{i, j\}$ and let G be the cyclic group of order n. Then $S = T \times G$ is (left) amenable since it is commutative. Assume that $(t_0, g_0) \in S$ is such that $0 < d = \psi\{(t_0, g_0)\}$ for some left invariant mean ψ on m(S) and let e be the identity of G. Since $(t, g_0^{-1})(t_0, g_0) = (t, e)$ if $t \ge t_0$, we get that $\psi\{(t_0 + k, e)\} \ge d$ for k = 1, 2, ... which implies that

$$1 \ge \psi\{(t_0+1, e), \ldots, (t_0+k, e)\} \ge kd$$

for any k. Hence, d=0 and any left invariant mean on S annihilates single point sets. It remains to be shown that the order of S' is n. We show that a'=b' if and only if $a, b \in (T, g)$ for some $g \in G$. If $a=(t_1, g), b=(t_2, g)$ and $t=\max(t_1, t_2)$, then $(t_1, g)(t, e)=(t, g)=(t_2, g)(t, e)$. Hence, a'=b'. Conversely, if a'=b' and $a=(t_1, g_1)$, $b=(t_2, g_2)$ then for some $(t, g) \in S$, $(t_1, g_1)(t, g)=(t_2, g_2)(t, g)$. Hence, $g_1g=g_2g$ or $g_1=g_2$. Therefore, $a, b \in (T, g_1)$. Thus, $\{(T, g); g \in G\}$ are the different equivalence classes which give rise to the different elements of S'. It can be readily checked that S' is isomorphic to G in this case.

LEMMA 6. Let $\rho: S \to T$ be a homomorphism of the left amenable semigroup S onto the semigroup T. Assume that there is a family of subsets of T, $\{B(x); 0 \le x \le 1\}$ which satisfies:

- (1) $B(0) = \emptyset$, B(1) = T and $B(x) \subseteq B(x')$ if $0 \le x < x' \le 1$.
- (2) $\psi(B(x)) = x$ for each $0 \le x \le 1$ and any left invariant mean ψ on m(T). Then $\{A(x) = \rho^{-1}[B(x)], 0 \le x \le 1\}$ satisfies
 - (1)' $A(0) = \emptyset$, A(1) = S and $A(x) \subseteq A(x')$ if $0 \le x < x' \le 1$.
 - (2)' $\phi[A(x)] = x$ for any left invariant mean ϕ on m(S) and each $0 \le x \le 1$.

Proof. It is clear that A(x) satisfy (1)'.

Define $F: m(T) \to m(S)$ by $(Ff)(s) = f(\rho(s))$. Let $\phi \in m(S)^*$ be a left invariant mean. Then $F^*\phi \in m(T)^*$ defined by $(F^*\phi)f = \phi(Ff)$ is a left invariant mean on m(T) (see Day [2, p. 515(c) and pp. 531-532]). But $(F1_{B(x)})(s) = 1_{B(x)}(\rho(s)) = 1_{A(x)}(s)$ for each s in S. Therefore,

$$x = (F^*\phi)[1_{B(x)}] = \phi[1_{A(x)}] = \phi[A(x)]$$

for each $0 \le x \le 1$.

We prove now the main theorem of this paper.

THEOREM 3. Let S be a left amenable semigroup for which S' is not an AB group. (S' is necessarily a left amenable right cancellation semigroup which is a group in case it is periodic.)

(1) If S' is infinite, then the range of each of its invariant means is the whole [0, 1] interval. Moreover, there are, in this case, sets $A(x) \subseteq S$ such that $A(0) = \emptyset$, A(1) = S, $A(x) \subseteq A(x')$ if $0 \le x < x' \le 1$, and $\phi(A(x)) = x$ for each left invariant mean ϕ on $\dot{m}(S)$. (In particular, ϕ attains its range on left almost convergent sets.)

- (2) If the range of each left invariant mean on m(S) is the whole [0, 1] interval, then S' is infinite.
- **Proof.** We first prove (2). If S' contains $0 < n < \infty$ elements, then by Lemma 5 there is a left invariant mean ϕ on m(S) whose range is the set $\{k/n; k=0, 1, \ldots, n\}$. (There are even $A_i \subset S$ with $\emptyset = A_0, A_n = S, A_i \subset A_{i+1}$ for $0 \le i \le n-1$ and such that $\phi(A_k) = k/n$ for $k = 0, 1, \ldots, n$ and each left invariant mean ϕ on m(S).)

We prove now (1):

- (a) If S' contains an element of infinite order, then apply the corollary to Theorem 1 and Lemma 6.
- (b) If S' does not contain elements of infinite order, then S' is periodic which implies by Lemma 5 that S' is a group which by our assumption contains an infinite locally finite subgroup $T'_0 \subset S'$. There are now finite subgroups $S'_n \subset T'_0$ with $S'_n \subseteq S'_{n+1}$, $n=1, 2, \ldots$ Let $S'_0 = \bigcup_{1}^{\infty} S'_n$. As a locally finite group, T'_0 is amenable (Day [2, p. 517(k')]). Apply now Theorem 2 (with G = S' and $S = S'_0$) and Lemma 6.

Consequence.

- (a) If S is a semigroup which admits a left invariant mean ϕ for which $\phi(A) \neq (1/\sqrt{2})$ (say) for each $A \subseteq S$ (or even for each left almost convergent $A \subseteq S$), then S' is either an AB group or a finite group.
- (b) If S' is not an AB group, then the set $\{\phi(A); A \text{ ranges over all left almost convergent subsets of S} is either the entire [0, 1] interval for each left invariant mean <math>\phi \in m(S)^*$, or the set $\{k/n; k=0, 1, ..., n\}$, for some $0 < n < \infty$, for each left invariant mean $\phi \in m(S)^*$.
- (c) Is there a finitely additive translation invariant measure ϕ on the set of all subsets of the additive integers Z such that $\phi(Z)=1$ and $\phi(A)$ is rational, say, for any $A \subset Z$? Any such ϕ is, as is easily checked, the restriction of some invariant mean ψ on m(Z), to $\{1_A; A \subset Z\}$. Theorem 3 implies hence that the answer to this (and in fact to a much more general) question is negative.

REFERENCES

- 1. E. S. Ljapin, Semigroups, Transl. Math. Monographs, Vol. 3, Amer. Math. Soc., Providence, R. I., 1963.
 - 2. M. M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509-544.
- 3. E. Granirer, A theorem on amenable semigroups, Trans. Amer. Math. Soc. 111 (1964), 367-379.
 - 4. ——, Extremely amenable semigroups, Math. Scand. 17 (1965), 177-197.
- 5. T. Mitchell, Fixed points and multiplicative left invariant means, Trans. Amer. Math. Soc. 122 (1966), 195-202.
- 6. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80, (1948), 167-190.

University of British Columbia, Vancouver, British Columbia, Canada